Multimodal Vision Research Laboratory

MVRL

publications

medical and biological imaging

back to all publications.
  1. PDF Liang G, Greenwell C, Zhang Y, Xing X, Wang X, Kavuluru R, Jacobs N. 2021. Contrastive Cross-Modal Pre-Training: A General Strategy for Small Sample Medical Imaging. IEEE Journal of Biomedical and Health Informatics. DOI: 10.1109/JBHI.2021.3110805.
    bibtex | doi
  2. Liang G, Xing X, Liu L, Zhang Y, Ying Q, Lin A-L, Jacobs N. 2021. 2D Convolutional Neural Networks for Alzheimer’s Disease MRI Classification. In: International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC).
    bibtex
  3. Ying Q, Xing X, Liu L, Lin A-L, Jacobs N, Liang G. 2021. Multi-Modal Data Analysis for Alzheimer’s Disease Diagnosis: An Ensemble Model Using Imagery and Genetic Features. In: International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC).
    bibtex
  4. PDF Liang G, Greenwell C, Zhang Y, Wang X, Kavuluru R, Jacobs N. 2020. Weakly-Supervised Feature Learning via Text and Image Matching. arXiv preprint 2010.03060 [cs.CV].
    bibtex
  5. PDF Xing X, Liang G, Blanton H, Rafique MU, Wang C, Lin A-L, Jacobs N. 2020. Dynamic Image for 3D MRI Image Alzheimer’s Disease Classification. In: ECCV Workshop on BioImage Computing (BIC).
    bibtex
  6. PDF Liang G, Zhang Y, Wang X, Jacobs N. 2020. Improved Trainable Calibration Method for Neural Networks. In: British Machine Vision Conference (BMVC).
    bibtex | website | tweet
  7. PDF Liang G, Zhang Y, Jacobs N. 2020. Neural Network Calibration for Medical Imaging Classification Using DCA Regularization. In: ICML 2020 workshop on Uncertainty and Robustness in Deep Learning (UDL).
    bibtex
  8. PDF Hammond TC, Xing X, Wang C, Ma D, Nho K, Crane PK, Elahi F, Ziegler DA, Liang G, Cheng Q, Yanckello LM, Jacobs N, Lin A-L. 2020. Beta-amyloid and tau drive early Alzheimer’s disease decline while glucose hypometabolism drives late decline. Communications Biology 3:352. DOI: 10.1038/s42003-020-1079-x.
    bibtex | doi | tweet
  9. PDF Liang G, Wang X, Zhang Y, Jacobs N. 2020. Weakly-Supervised Self-Training for Breast Cancer Localization. In: International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). DOI: 10.1109/EMBC44109.2020.9176617.
    bibtex | doi
  10. PDF Wang X, Liang G, Zhang Y, Blanton H, Bessinger Z, Jacobs N. 2020. Inconsistent Performance of Deep Learning Models on Mammogram Classification. Journal of the American College of Radiology. DOI: 10.1016/j.jacr.2020.01.006.
    bibtex | doi
  11. Hammond T, Xing X, Jacobs N, Lin A-L. 2019. Phase-dependent importance of amyloid-beta, phosphorylated-tau, and hypometabolism in determining mild cognitive impairment and Alzheimer’s disease: A machine learning study. In: Alzheimer’s Disease Therapeutics: Alternatives to Amyloid.
    bibtex
  12. PDF Zhang Y, Wang X, Blanton H, Liang G, Xing X, Jacobs N. 2019. 2D Convolutional Neural Networks for 3D Digital Breast Tomosynthesis Classification. In: IEEE International Conference on Bioinformatics and Biomedicine (BIBM). DOI: 10.1109/BIBM47256.2019.8983097.
    bibtex | doi
  13. PDF Liang G, Wang X, Zhang Y, Xing X, Blanton H, Salem T, Jacobs N. 2019. Joint 2D-3D Breast Cancer Classification. In: IEEE International Conference on Bioinformatics and Biomedicine (BIBM). DOI: 10.1109/BIBM47256.2019.8983048.
    bibtex | doi
  14. Zhang Y, Liang G, Jacobs N, Wang X. 2019. Unsupervised Domain Adaptation for Mammogram Image Classification: A Promising Tool for Model Generalization. In: Conference on Machine Intelligence in Medical Imaging (CMIMI).
    bibtex
  15. Liang G, Jacobs N, Wang X. 2019. Training Deep Learning Models as Radiologists: Breast Cancer Classification Using Combined whole 2D Mammography and full volume Digital Breast Tomosynthesis. In: Radiological Society of North America (RSNA).
    bibtex
  16. PDF Liang G, Fouladvand S, Zhang J, Brooks MA, Jacobs N, Chen J. 2019. GANai: Standardizing CT Images using Generative Adversarial Network with Alternative Improvement. In: IEEE International Conference on Healthcare Informatics (ICHI). DOI: 10.1109/ICHI.2019.8904763.
    bibtex | doi
  17. Mihail RP, Liang G, Jacobs N. 2019. Automatic Hand Skeletal Shape Estimation from Radiographs. IEEE Transactions on NanoBioscience. DOI: 10.1109/TNB.2019.2911026.
    bibtex | doi
  18. Liang G, Jacobs N, Liu J, Luo K, Owen W, Wang X. 2019. Translational relevance of performance of deep learning models on mammograms. In: SBI/ACR Breast Imaging Symposium.
    bibtex
  19. Liang G, Wang X, Jacobs N. 2018. Evaluating the Publicly Available Mammography Datasets for Deep Learning Model Training. In: SBI/ACR Breast Imaging Symposium.
    bibtex
  20. Mihail RP, Jacobs N. 2018. Automatic Hand Skeletal Shape Estimation from Radiographs. In: IEEE International Conference on Bioinformatics and Biomedicine (BIBM). DOI: 10.1109/BIBM.2018.8621196.
    bibtex | doi
  21. Zhang X, Zhang Y, Han E, Jacobs N, Han Q, Wang X, Liu J. 2018. Classification of whole mammogram and tomosynthesis images using deep convolutional neural networks. IEEE Transactions on NanoBioscience. DOI: 10.1109/TNB.2018.2845103.
    bibtex | doi
  22. Jones D, Jacobs N, Ellingson S. 2018. Learning Deep Feature Representations for Kinase Polypharmacology. In: ACM Richard Tapia Celebration of Diversity in Computing Conference.
    bibtex
  23. Jones D, Bopaiah J, Alghamedy F, Jacobs N, Weiss H, Jong WAD, Ellingson S. 2018. Polypharmacology Within the Full Kinome: a Machine Learning Approach. In: AMIA Informatics Summit.
    bibtex
  24. Zhang X, Zhang Y, Han E, Jacobs N, Han Q, Wang X, Liu J. 2017. Whole Mammogram Image Classification With Convolutional Neural Networks. In: IEEE International Conference on Bioinformatics and Biomedicine (BIBM). DOI: 10.1109/BIBM.2017.8217738.
    bibtex | doi
  25. Mihail RP, Jacobs N, Goldsmith J, Lohr K. 2015. Using Visual Analytics to Inform Rheumatoid Arthritis Patient Choices. In: Loh CS, Sheng Y, Ifenthaler D eds. Serious Games Analytics. Advances in Game-Based Learning. Springer International Publishing, 211–231. DOI: 10.1007/978-3-319-05834-4_9.
    bibtex | doi
  26. PDF Mihail RP, Blomquist G, Jacobs N. 2014. A CRF Approach to Fitting a Generalized Hand Skeleton Model. In: IEEE Winter Conference on Applications of Computer Vision (WACV). 409–416. DOI: 10.1109/WACV.2014.6836070.
    bibtex | doi
  27. PDF Dixon M, Jacobs N, Pless R. 2006. Finding Minimal Parameterizations of Cylindrical Image Manifolds. In: IEEE CVPR Workshop on Perceptual Organization in Computer Vision (POCV). 1–8. DOI: 10.1109/CVPRW.2006.82.
    bibtex | doi