Multimodal Vision Research Laboratory

back to all publications.

publications : medical and biological imaging

  1. Liang G, Zhang Y, Jacobs N. 2020. Neural Network Calibration for Medical Imaging Classification Using DCA Regularization. In: ICML 2020 workshop on Uncertainty and Robustness in Deep Learning (UDL).
    bibtex
  2. Hammond TC, Xing X, Wang C, Ma D, Nho K, Crane PK, Elahi F, Ziegler DA, Liang G, Cheng Q, Yanckello LM, Jacobs N, Lin A-L. 2020. Beta-amyloid and tau drive early Alzheimer’s disease decline while glucose hypometabolism drives late decline. Communications Biology 3:352. DOI: 10.1038/s42003-020-1079-x.
    bibtex
  3. Liang G, Wang X, Zhang Y, Jacobs N. 2020. Weakly-Supervised Self-Training for Breast Cancer Localization. In: International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC).
    bibtex
  4. Wang X, Liang G, Zhang Y, Blanton H, Bessinger Z, Jacobs N. 2020. Inconsistent Performance of Deep Learning Models on Mammogram Classification. Journal of the American College of Radiology.
    bibtex
  5. Hammond T, Xing X, Jacobs N, Lin A-L. 2019. Phase-dependent importance of amyloid-beta, phosphorylated-tau, and hypometabolism in determining mild cognitive impairment and Alzheimer’s disease: A machine learning study. In: Alzheimer’s Disease Therapeutics: Alternatives to Amyloid.
    bibtex
  6. Zhang Y, Wang X, Blanton H, Liang G, Xing X, Jacobs N. 2019. 2D Convolutional Neural Networks for 3D Digital Breast Tomosynthesis Classification. In: IEEE International Conference on Bioinformatics and Biomedicine (BIBM).
    bibtex
  7. Liang G, Wang X, Zhang Y, Xing X, Blanton H, Salem T, Jacobs N. 2019. Joint 2D-3D Breast Cancer Classification. In: IEEE International Conference on Bioinformatics and Biomedicine (BIBM).
    bibtex
  8. Zhang Y, Liang G, Jacobs N, Wang X. 2019. Unsupervised Domain Adaptation for Mammogram Image Classification: A Promising Tool for Model Generalization. In: Conference on Machine Intelligence in Medical Imaging (CMIMI).
    bibtex
  9. Liang G, Jacobs N, Wang X. 2019. Training Deep Learning Models as Radiologists: Breast Cancer Classification Using Combined whole 2D Mammography and full volume Digital Breast Tomosynthesis. In: Radiological Society of North America (RSNA).
    bibtex
  10. PDF Liang G, Fouladvand S, Zhang J, Brooks MA, Jacobs N, Chen J. 2019. GANai: Standardizing CT Images using Generative Adversarial Network with Alternative Improvement. In: IEEE International Conference on Healthcare Informatics (ICHI).
    bibtex
  11. Mihail RP, Liang G, Jacobs N. 2019. Automatic Hand Skeletal Shape Estimation from Radiographs. IEEE Transactions on NanoBioscience.
    bibtex
  12. Liang G, Jacobs N, Liu J, Luo K, Owen W, Wang X. 2019. Translational relevance of performance of deep learning models on mammograms. In: SBI/ACR Breast Imaging Symposium.
    bibtex
  13. Liang G, Wang X, Jacobs N. 2018. Evaluating the Publicly Available Mammography Datasets for Deep Learning Model Training. In: SBI/ACR Breast Imaging Symposium.
    bibtex
  14. Mihail RP, Jacobs N. 2018. Automatic Hand Skeletal Shape Estimation from Radiographs. In: IEEE International Conference on Bioinformatics and Biomedicine (BIBM).
    bibtex
  15. Zhang X, Zhang Y, Han E, Jacobs N, Han Q, Wang X, Liu J. 2018. Classification of whole mammogram and tomosynthesis images using deep convolutional neural networks. IEEE Transactions on NanoBioscience. DOI: 10.1109/TNB.2018.2845103.
    bibtex
  16. Jones D, Jacobs N, Ellingson S. 2018. Learning Deep Feature Representations for Kinase Polypharmacology. In: ACM Richard Tapia Celebration of Diversity in Computing Conference.
    bibtex
  17. Jones D, Bopaiah J, Alghamedy F, Jacobs N, Weiss H, Jong WAD, Ellingson S. 2018. Polypharmacology Within the Full Kinome: a Machine Learning Approach. In: AMIA Informatics Summit.
    bibtex
  18. Zhang X, Zhang Y, Han E, Jacobs N, Han Q, Wang X, Liu J. 2017. Whole Mammogram Image Classification With Convolutional Neural Networks. In: IEEE International Conference on Bioinformatics and Biomedicine (BIBM).
    bibtex
  19. Mihail RP, Jacobs N, Goldsmith J, Lohr K. 2015. Using Visual Analytics to Inform Rheumatoid Arthritis Patient Choices. In: Loh CS, Sheng Y, Ifenthaler D eds. Serious Games Analytics. Advances in Game-Based Learning. Springer International Publishing, 211–231. DOI: 10.1007/978-3-319-05834-4_9.
    bibtex
  20. PDF Mihail RP, Blomquist G, Jacobs N. 2014. A CRF Approach to Fitting a Generalized Hand Skeleton Model. In: IEEE Winter Conference on Applications of Computer Vision (WACV). 409–416. DOI: 10.1109/WACV.2014.6836070.
    bibtex
  21. PDF Dixon M, Jacobs N, Pless R. 2006. Finding Minimal Parameterizations of Cylindrical Image Manifolds. In: IEEE CVPR Workshop on Perceptual Organization in Computer Vision (POCV). 1–8. DOI: 10.1109/CVPRW.2006.82.
    bibtex